В Политехе создали умные сваи для устойчивого строительства в Арктике

Принципиально новую технологию возведения фундаментов для экстремальных условий Арктики и Крайнего Севера разработали сотрудники Санкт-Петербургского политехнического университета Петра Великого (СПбПУ). Как сообщили ТАСС в пресс-службе университета,

«Удалось не просто создать более легкую и прочную сваю, а сформировать целостную технологию — от виртуального проектирования до стендовых испытаний, адаптированную под экстремальные условия Арктики. Это результат, который делает строительство на вечной мерзлоте не только более надежным, но и экономически оправданным», — привели в пресс-службе слова инженера-исследователя научно-технического комплекса «Новые технологии и материалы» ИММиТ СПбПУ Ивана Карпова.

Конструкцию буроопускной сваи из стеклопластика создали, применив оригинальную технологию изготовления макетов. Она заключается в особом способе намотки армирующего материала. Все это позволило снизить вес конструкции сваи более чем на 6%, а материалоемкость — на 5% при одновременном увеличении несущей способности по сравнению с традиционными решениями.

Кроме того, инженеры разработали адаптивную цифровую модель взаимодействия сваи с многолетнемерзлыми грунтами (ММГ). Она способна прогнозировать поведение сваи в ММГ грунте с точностью до 95% (валидация цифровой модели проводилась на данных испытаний научно-технологического комплекса «Новые технологии и материалы»). Технология объединяет стендовые испытания (которые проводятся в Якутске) и цифровое моделирование, позволяя оперативно подбирать оптимальные параметры свай под нестандартные и разнородные условия грунтов.

Разработка «политехников» позволяет снизить общие затраты на возведение фундаментов в условиях многолетнемерзлых грунтов до 10% за счет использования полимерных материалов, новой конструкции сваи, а также ускорения проектирования с помощью цифровой модели. Повышенная надежность фундаментов снижает риски аварий и дорогостоящих ремонтов, обеспечивая долгосрочную устойчивость объектов инфраструктуры, что особенно актуально для территорий Крайнего Севера.

Новая технология может быть востребована в нефтегазовой отрасли, энергетике и жилищном строительстве, а ее масштабируемость дает большие возможности коммерциализации.

В планах разработчиков — до 2030 года пройти путь от стендовых и натурных испытаний до опытно-промышленной эксплуатации и промышленного освоения технологии. Планируется полная верификация цифровой модели, патентование ключевых решений и разработка регламентов серийного производства свай. В перспективе технология может быть внедрена в строительные нормы. Дальнейшее развитие проекта предполагает масштабирование производства и адаптацию решения под различные типы многолетнемерзлых грунтов.

Работы осуществлялись при поддержке федеральной программы «Приоритет-2030».