
В Москве представили решения для технологического прорыва

Различные задачи, стоящие сегодня перед государством в области науки и промышленности, объединяет необходимость обеспечения технологического суверенитета и лидерства России. Ученые Санкт-Петербургского политехнического университета Петра Великого (СПбПУ) проанализировали ключевые вызовы и предложили комплексные решения в рамках трех научнотехнологических направлений при поддержке программы «Приоритет-2030». Впервые представленные общественности в прессцентре медиагруппы «Россия сегодня» разработки уже сегодня формируют, по словам главных конструкторов направлений, основу технологического будущего страны.

В университете пояснили, что основой трех направлений («Искусственный интеллект для решения кросс-отраслевых задач», «Системный цифровой инжиниринг» и «Новые материалы, технологии, производство») стали научные коллективы, обладающие значительным научно-технологическим заделом и опытом устойчивого взаимодействия с индустриальными партнерами.

«Ключевые научно-технологические направления включают фундаментальные, прикладные исследования и те стратегические продукты, с которыми мы планируем выходить на рынок», — подчеркнул проректор по научной работе СПбПУ, главный конструктор ключевого научно-технологического направления «Искусственный интеллект для решения кросс-отраслевых задач» *Юрий Фомин*.

Искусственный интеллект для решения кросс-отраслевых задач

«Цель направления «Искусственный интеллект для решения кросс-отраслевых задач» — стать признанными лидерами в области инженерного искусственного интеллекта», — сказал главный конструктор направления Фомин.

Ученый представил платформу, которая позволяет комплексно анализировать большие массивы разнородных и неструктурированных данных, необходимых, например, вертикально интегрированным нефтегазовым компаниям на разных этапах их работы.

«Мы создаем цифровую платформу анализа мультимодальных (разнородных) данных для получения предиктивной и прескриптивной аналитики — то есть для предсказания того, что будет, и объяснения, почему», — отметил он.

По словам ученого, новая система представляет собой «конструктор» решений, способный адаптироваться под различные отрасли — от промышленности до медицины.

«Для нас было принципиально важно на одной платформе свести различные методы, протестировать их работу на частных задачах, убедиться в том, что мы умеем их решать с достаточной точностью, и как единый продукт предлагать заказчику», — объяснил главный конструктор.

Одной из таких частных задач является применение технологий искусственного интеллекта для ускорения трудоемкого поиска и оптимизации биологически активных веществ (БАВ), которые могут стать основой для создания новых лекарств в терапии злокачественных новообразований.

Заведующий лабораторией нано- и микрокапсулирования биологически активных веществ Института биомедицинских систем и биотехнологий СПбПУ Александр Тимин сообщил, что разработанная платформенная технология на основе ИИ позволяет провести отбор наиболее перспективных химических структур БАВ для их последующего синтеза и проведения доклинических испытаний.

«Мы сформировали базу данных из более чем 100 тысяч химических структур БАВ на основе аминотиофенов и отобрали наиболее перспективные из них, которые реально можно синтезировать на базе нашей химической лаборатории. Следует отметить, что после создания предобученой нейросети такой результат можно получить буквально в течение нескольких дней. Хотя использование традиционного алгоритма последовательного отбора потенциально перспективных БАВ с таким же объемом данных может занять годы», — рассказал он.

Системный цифровой инжиниринг

Директор Передовой инженерной школы «Цифровой инжиниринг» СПбПУ, главный конструктор ключевого научнотехнологического направления «Системный цифровой инжиниринг» Алексей Боровков подчеркнул, что его коллектив работает над обеспечением превосходства российских технологий и продукции над зарубежными аналогами путем внедрения и развития передовой технологии цифровых двойников. С ее помощью можно проектировать и тестировать продукты производства в виртуальной среде.

«Применять цифровые двойники позволяет цифровая платформа, на которой представлены 170 передовых технологий и 377 тысяч цифровых и проектных решений. Мы вошли по этому направлению в два национальных проекта технологического лидерства. Это «Беспилотные авиационные системы» и «Новые атомные энергетические технологии». С января будем работать по НПТЛ «Развитие космической деятельности», — сказал главный конструктор.

Научный сотрудник Лаборатории гидромашиностроения Института энергетики СПбПУ *Арсентий Клюев* представил результаты проекта по созданию высокоэффективных промышленных насосов для работы с загрязненными жидкостями. Их КПД выше, чем у зарубежных аналогов.

«В сжатые сроки мы спроектировали насосы, которые не уступают, а в ряде случаев превосходят лучшие мировые аналоги. Это стало возможно благодаря накопленному научнотехническому заделу, капитализированному с использованием цифровых платформенных решений, разрабатываемых в Политехе», — отметил исследователь, добавив, что насосы найдут применение в ЖКХ и сельском хозяйстве.

Новые материалы, технологии, производство

Особое внимание эксперты уделили технологиям для энергетики и нефтегазовой промышленности.

По словам директора Института машиностроения, материалов и транспорта СПбПУ, главного конструктора ключевого научнотехнологического направления «Новые материалы, технологии, производство» *Анатолия Поповича*, 80 процентов сегмента газоперекачивающих агрегатов занято иностранными производителями оборудования.

«Мы создали триаду: в одну цепочку на базе цифры объединили разработку новых материалов, технологии изготовления изделий из этих материалов и производство продукта», — сказал ученый, добавив, что с помощью этой триады университет может на 40 процентов сократить зависимость от иностранных запчастей, в два раза сократить время капитального ремонта на энергетических предприятиях и в пять раз ускорить внедрение инноваций.

В числе практических результатов — первая в России 3D-печатная лопатка газовой турбины.

«Традиционно лопатку изготавливают методом литья. А мы впервые в России напечатали ее методом 3D-печати. Она прошла испытания на реальном объекте: на сегодняшний день наработка составила порядка трех тысяч часов», — подчеркнул Анатолий Попович.

Коллектив авторов также разработал в рамках направления уникальную технологию изготовления сложнопрофильных металлических изделий из нескольких материалов методом 3D-печати. Она позволяет за один производственный цикл изготавливать детали, состоящие из четырех сплавов.

«Возникают ситуации, когда изделие из одного материала не может обеспечить требуемый комплекс свойств, зачастую противоречивых, например, высокую твердость и пластичность, теплопроводность и коррозионную стойкость. Для решения таких задач и была разработана технология печати сразу несколькими металлами», — рассказал доцент научнообразовательного центра «Конструкционные и функциональные материалы» Института машиностроения, материалов и транспорта СПбПУ Евгений Борисов.

По его словам, новый способ повышает жаропрочность, износостойкость и теплопроводность изделий, а также значительно ускоряет процесс производства. При этом размер элемента у такой детали может быть менее одного миллиметра. Например, образец малоразмерной камеры сгорания, традиционный цикл изготовления которого длится порядка месяца, был получен в Политехе методом 3D-печати всего за несколько дней.

Научные проекты реализованы при поддержке программы «Приоритет 2030».

Информация и фото с официального сайта: