Создание технологий для промышленности будущего

В условиях глобальной технологической конкуренции университеты становятся не только центрами образования, но и генераторами прорывных решений, определяющих облик целых отраслей на годы вперед. В Санкт-Петербургском политехническом университете Петра Великого эту задачу решают через концентрацию усилий на трех стратегических направлениях: «Системный цифровой инжиниринг», «Материалы, технологии, производство» и «Искусственный интеллект для решения кросс-отраслевых задач». Анализ научных заделов позволил университету сформулировать дорожную карту развития до 2030 года, ориентированную не только на текущие вызовы, но и на будущие потребности промышленности.

«Мы ставим во главу угла не только передовые технические характеристики, но и потенциальный экономический эффект для российских предприятий, — отмечает руководитель Офиса технологического лидерства СПбПУ Олег Рождественский. — Принцип кросс-отраслевого трансфера технологий позволяет нам создавать решения, которые, доказав эффективность в одной сфере, могут быть масштабированы на смежные».

Цифровой инжиниринг для атомной энергетики

Ярким примером такого подхода является разработка усовершенствованной перемешивающей решетки для активной зоны малых модульных реакторов (ММР), ведущаяся учеными Передовой инженерной школы «Цифровой инжиниринг». В водо-водяных энергетических реакторах этот критически важный элемент тепловыделяющей сборки отвечает за интенсификацию теплоотвода и предотвращение кризиса кипения.

«Задача решетки — создать максимально турбулентный поток теплоносителя, чтобы эффективно "снимать" тепло с топливных элементов и "взбивать" опасные паровые пузыри, — объясняет заместитель директора Центра компьютерного инжиниринга СПбПУ Николай Ефимов-Сойни. — Это предотвращает локальные перегревы и обеспечивает безопасность».

Актуальность работы обусловлена реализацией национального проекта «Новые атомные и энергетические технологии», в фокусе которого — создание перспективных ММР, таких, как РИТМ-200. Такие реакторы мощностью до 200 МВт предназначены для энергообеспечения удаленных и труднодоступных регионов, включая арктические месторождения.

Уникальность разработки СПбПУ — в применении аддитивных технологий. «Классическое производство из металлического листа исчерпало резервы для повышения эффективности. ЗD-печать позволяет нам конструировать решетки со сложной внутренней геометрией, что принципиально недостижимо традиционными методами и ведет к повышению КПД реактора и, как следствие, к снижению стоимости электроэнергии», — подчеркивает Ефимов-Сойни.

Новые материалы для транспорта будущего

В свою очередь, специалисты Института машиностроения, материалов и транспорта работают над созданием сэндвич-панелей на основе пеноалюминия — многофункционального материала с широким спектром применения. Его ячеистая структура, напоминающая пористый шоколад, сочетает низкую плотность с выдающимися демпфирующими и теплоизоляционными свойствами.

«Конструкции из пеноалюминия эффективно рассеивают энергию удара и гасят вибрации, — комментирует директор Высшей школы физики и технологий материалов Института машиностроения, материалов и транспорта СПбПУ Сергей Ганин. — Это открывает перспективы для создания легких бамперов в автомобилестроении, элементов бронетехники и, что особенно актуально, для виброизоляции высокоскоростных поездов».

Ключевая инновация ученых в университете — не только в создании трехслойных «сэндвичей» (оболочка из прочного алюминия или стали + пенопенный сердечник), но и в существенном удешевлении технологии. Они разработали состав на основе карбонатов, который приходит на смену дорогостоящим порообразователям, таким как гидрид титана. Это делает материал более доступным для массового внедрения, в частности, в проектах РЖД, включая строящуюся высокоскоростную магистраль.

Искусственный интеллект в геологоразведке

Третье стратегическое направление связано с применением искусственного интеллекта для решения кросс-отраслевых задач. Ученые СПбПУ разрабатывают алгоритм, способный революционизировать процесс обработки сейсмических данных в нефтегазовой отрасли. Традиционная интерпретация таких данных — рутинный, многоэтапный процесс, занимающий месяцы и сильно зависящий от человеческого фактора.

«Наша модель автоматизирует сборку "мозаики" из тысяч данных, — говорит руководитель проекта, руководитель проекта, главный инженер Высшей школы физики и технологий материалов Института машиностроения, материалов и транспорта СПбПУ Иван Жданов. — Алгоритм на основе архитектуры Transformer самостоятельно находит закономерности и реконструирует недостающие фрагменты, создавая более точную картину подземных структур».

Испытания показали, что подход СПбПУ не только сопоставим с традиционными методами, но и превосходит их при работе с неполными данными. Практическое внедрение разработки позволит в разы сократить время интерпретации, минимизировать риски при бурении и потенциально сэкономить сотни миллионов рублей за счет оптимизации количества скважин.

Представленные проекты демонстрируют, как фундаментальные научные заделы трансформируются в конкретные технологические продукты с четко просчитанным экономическим эффектом. Синергия стратегического видения университета и долгосрочных планов индустриальных партнеров создает мощный тандем, способный формировать не просто актуальные, а опережающие технологии, которые определят лицо российской промышленности в следующем десятилетии.